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Abstract
We discuss the role of singletons and logarithmic operators in AdS3 string
theory in the context of AdS3/CFT2 correspondence.

PACS numbers: 11.25.Hf, 11.25.−w

1. Introduction

String theory in AdS3 background has been widely studied as an example of string theory
in non-trivial curved spacetime background in last one decade and recently in the context of
AdS/CFT correspondence [1, 2]. Worldsheet theory is described by the SL(2, R) WZNW
model.

Correlation functions in the WZNW model satisfy Knizhnik–Zamolodchikov (KZ)
equation [3]. In [4–6] some solutions of Knizhnik–Zamolodchikov equation for four-point
functions of SL(2, R) primaries were found which were logarithmically singular as the two
operators approach each other. It was suggested that it might be necessary to include
contribution of logarithmic operators in operator product expansion (OPE) and SL(2, R)

WZNW conformal theory is a logarithmic conformal field theory (LCFT) [7, 8] (see also the
recent reviews [9] and references therein). The solutions involved one or more operators in
non-trivial identity representation. In addition to trivial identity which is just a constant, we
also have a non-trivial identity in SL(2, R) representation theory (see below). This corresponds
to singletons. These are special finite-dimensional representations which lie at the limit of
unitary bound [10].

A representation of SL(2, R) group [11] element can be labelled by eigenvalue of
quadratic Casimir, −j (j + 1) and eigenvalue, m of one of generators say J 3. We have
(i) continuous representation, Cj , j + α �∈ Z, α being the fractional part of m; (ii) discrete
series of lowest weight type, D+

j , 2j �∈ Z
+ ∪ 0; (iii) discrete series of highest weight type,

D−
j , 2j �∈ Z

+ ∪ 0 and (iv) finite-dimensional representation Ij , 2j ∈ Z
+ ∪ 0. We have

suppressed the other label m and fractional part of m. Continuous series is unitary for
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j = − 1
2 + iρ, ρ ∈ R, and for an exceptional interval − 1

2 < j < 1
2 , discrete series D−

j and D+
j

for j < 0 and finite-dimensional representation Ij for j = 0 only.
Finite-dimensional representation can be embedded in a reducible but indecomposable

representation with eigenvalues of J 3 unrestricted. Singletons are part of this non-unitary
indecomposable finite-dimensional representation j = 0. It should be distinguished from
trivial j = 0 representation which appears if we restrict ourselves to unitary irreducible
representations.

Singleton representation is somewhat special. Two-point function of singleton modes in
AdS3 has two solutions, one of them is logarithmic (see, for example, [12] and references
therein). One can discard the logarithmic solution by imposing vanishing flux condition at
infinity in favour of the other. However, it can still give logarithmic singularities in four-point
functions. It was shown in [13] that if one considers singletons in the bulk of AdS3, then
two-point functions are logarithmic in boundary conformal field theory (see also [14]). It was
conjectured [13] that boundary conformal field theory is logarithmic conformal field theory.
Calculation of absorption cross section for gauge bosons in the bulk of AdS3 [15, 16] (further
discussed in [17] in the context of AdS/LCFT correspondence) lends some support to this
conjecture.

It was argued that j = − 1
2 ∈ D+

j representation determines whether boundary CFT is

logarithmic or not [18]. j = − 1
2 was considered as unitary bound in SL(2, R) WZNW

model in that reference. AdS/CFT correspondence allows us to define correlation function
for j > − 1

2 beyond the bound j = − 1
2 . We show that they are well behaved unless we reach

the unitary bound j = 0.
At j = 0 we have to take into account the singleton representation and correlation

functions can be logarithmic.
The paper is organized as follows. In section 2, we discuss the origin of logarithmic

operators in AdS3 string theory. In section 3, it is shown how singletons can give logarithmic
correlation functions in boundary CFT. In section 4, we discuss correlation functions of fields
with j > − 1

2 and dimension-dependentnormalization of the fields in the interval 0 � j � − 1
2 .

We conclude with brief discussion and summary.

2. Logarithmic operators in SL(2, R) WZNW model

Primary fields of SL(2, R) WZNW are labelled by the quantum numbers of global SL(2, R)

symmetry. Generators of global SL(2, R) group satisfy

[J +, J −] = −2J 3 [J 3, J ±] = ±J ±. (1)

The quadratic Casimir is

C2 = ηabJ
aJ b = 1

2 (J +J − + J −J +) − J 3J 3 = −j (j + 1). (2)

A representation for the SL(2, R) generators is given by [19]

D+ = −x2 ∂

∂x
+ 2jx D− = − ∂

∂x
D3 = x

∂

∂x
− j. (3)

Primary fields φj(x, z) satisfy

J aφj (x, z) = Da(x)φj(x, z) (4)

where J a are the zero modes of the SL(2, R) current algebra and Da(x) is as given in
equation (3). The fields φj (x, z) are also primary with respect to the Virasoro algebra with L0

eigenvalue:

�j = −j (j + 1)

k − 2
. (5)
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For the discussion of correlation function we consider Euclidean version of SL(2, R),
which is SL(2, C)/SU(2). Primary fields of the Euclidean model are given by [20, 21]

φj(x, z) ∼
[
(1,−x)g

(
1

−x̄

)]
= [(γ − x)(γ̄ − x̄) e2φ + e−2φ]2j (6)

where g ∈ SL(2, C) and γ, γ̄ and φ are SL(2, C) coordinates.
The primary field φj (x, z) has the form of a bulk to boundary Green function for a scalar

field in AdS3 and (x, x̄) has the interpretation of boundary coordinates [20].
Correlation functions in WZNW model satisfy a set of partial differential equations known

as Knizhnik–Zamolodchikov (KZ) equation [3]. For two- and three-point functions it gives
no new information. Four-point functions are determined by conformal invariance up to a
function, F(x, z), of conformally invariant cross ratios z = z12z34

z13z24
, x = x12x34

x13x24
. The Knizhnik–

Zamolodchikov (KZ) equation for the four-point functions becomes a partial differential
equation for conformal blocks F(x, z).

Existence of logarithmic operators is signalled by the presence of logarithmic singularities
of cross ratios in four-point solutions. In [5] we found some exact solutions with logarithms
of cross ratios in conformal blocks.

Consider a solution of the KZ equation with logarithmic singularities of cross ratios(
j = j1 = j3 �= − 1

2 , j2 = j4 = 0
)
:

〈φj(x1, z1)φ0(x2, z2)φj (x3, z3)φ0(x4, z4)〉
= |z13|−2h|x13|−2j

[
A

(
ln

∣∣∣∣1 − x

x

∣∣∣∣ +
2j + 1

k − 2
ln

∣∣∣∣1 − z

z

∣∣∣∣
)

+ B

]
. (7)

Now taking the 1 → 2 and 3 → 4 limits which correspond to x, z → 0, we can expand
our solution as

〈φj(x1, z1)φ0(x2, z2)φj (x3, z3)φ0(x4, z4)〉 = |z13|−2h|x13|−2j

[
ln |x12| ln |x34|

−2 ln |x24| +
2j + 1

k − 2
(ln |z12| + ln |z34| − 2 ln |z24|) + · · ·

]
(8)

where we use ln x = ln x12 + ln x34 − ln x13 − ln x24 = ln x12 + ln x34 − 2 ln x24 + · · · and
similarly for z. ‘· · ·’ stands for subleading terms.

The above solution is consistent if the OPE is of the following form:

φj(x1, z1)φ0(x2, z2) = Ex
j (x2, z2) ln |x12| + Ez

j (x2, z2) ln |z12| + Fj (x2, z2) + · · ·
(9)

φj(x3, z3)φ0(x4, z4) = Ex
j (x4, z4) ln |x34| + Ez

j (x4, z4) ln |z34| + Fj (x4, z4) + · · · .
The two-point functions of the fields Ea

j and Fj are
(
j �= − 1

2

)
〈
Ea

j Eb
j

〉= 0
〈
Ez

j (x, z)Fj (0, 0)
〉= 2j + 1

(k − 2)
|z|−2h|x|−2j

〈
Ex

j (x, z)Fj (0, 0)
〉= |z|−2h|x|−2j

(10)

〈Fj (x, z)Fj (0, 0)〉 = −2|z|−2h|x|−2j

(
2j + 1

k − 2
ln |z| + ln |x|

)
.

If j = − 1
2 it is consistent at this level to set Ez

j = 0 and we have logarithmic blocks in
isotopic space only.

Now let us see how logarithmic operators can occur in AdS3 string theory. The fields
Ea

j and Fj are degenerate and span the Jordan cell structure of the Lie algebra. This is the
well-known story in logarithmic CFTs. One has to deal with reducible but indecomposable
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representation of the corresponding symmetry algebra. So one has to look for extension of
SL(2, R) modules to include the fields Ea

j and Fj .
The SL(2, R) module is degenerate for the following values of j [22]:

jr,s = r − 1

2
+

s − 1

2
(k − 2). (11)

Null states exist for r, s ∈ Z and one can consistently extend chiral symmetry algebra
to include the fields Ea

j and Fj satisfying the correlation functions (10) [23]. The extended
module for j1,1 ≡ 0 is also known as singleton representation.

Normalizable wavefunctions in AdS3 exist for j < 0 only and they are square integrable
only for j < − 1

2 . So if one is dealing with square integrable wavefunctions, it is sufficient to
restrict the fields with j < − 1

2 . However, to account for existence of logarithmic pairs of the
fields Ea

j and Fj one has to deal with representation to include fields with j � 0. At j = 0, one
encounters singleton representation. It plays a special role in bulk-boundary correspondence
as discussed in the next section.

3. Singletons and logarithmic operators in boundary CFT

Anti-de Sitter group SO(d, 2) in d + 1 spacetime dimensions has special representations called
singletons. They are special because they saturate the unitarity bound and have singular flat
spacetime limit as discovered by Dirac [24]. They can also be considered as topological
fields living on the boundary of AdS spacetime [25, 26]. Since the group SO(d, 2) is
the conformal symmetry group in d dimensions, we can consider them the representations
of conformal group in d dimensions. Singletons are in the indecomposable representation
of conformal algebra and give logarithmic correlation functions on the boundary of AdSd

[13, 14].
Theory of singletons can be formulated in terms of Flato–Fronsdal dipole [27] field which

satisfies the following equations of motion:

(∇ + m2)A + B = 0 (∇ + m2)B = 0. (12)

These can be derived from the following form of the action in AdSd+1,

S =
∫

dd+1x
√

g

(
gµν∂µA∂νB − m2AB − µ2

2
B2

)
(13)

with m2 = �(� − d) and µ2 = (2� − d)/2. Singleton corresponds to � = �0 = d−2
2 ⇒

µ2 = −1. For AdS3, d = 2 and � = �0 = 0 = m2, so we shall consider the limit � → 0.
The above form of the action is shown to give logarithmic two-point functions on the

boundary [14] of AdS spacetime. However, it does not make sense to write an action of
this form for all � except singletons. So one should work with the following action (with
understanding m2 → 0 for AdS3):

S =
∫

dd+1x
√

g

(
gµν∂µA∂νB − m2AB +

1

2
B2

)
. (14)

Given the form of singleton action in the bulk of AdS spacetime it remains to determine
the pair of fields on the boundary (say C and D) which couples to the dipole fields A and B.
Coupling of the fields C and D is of either

∫
dd−1x(αA0C + B0D) or

∫
dd−1x(αA0D + B0C).

Choosing the coupling
∫

ddx(αA0D + B0C) of boundary operators C and D, we get the
two-point functions of logarithmic operators C and D on the boundary [13, 14] via AdS/CFT
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correspondence,

〈C(�x)C( �x ′)〉 = 0

〈C(�x)D( �x ′)〉 = �

|�x − �x ′|2�
(15)

α2〈D(�x)D( �x ′)〉 = �

2� − d

1

|�x − �x ′|2�

[
−2ln

(
|�x − �x ′|2

ε

)
+

1

�

]
.

Standard normalization of equation (10) gives the value of α = 1/(2� − d).
As (x, x̄) has the interpretation of boundary coordinates, we see that there are logarithmic

operators in boundary CFT if they are present in the bulk theory.
Thus, beginning with singleton action in bulk of AdS spacetime, we get logarithmic

correlation functions on the boundary via AdS/CFT correspondence.

4. Correlation functions beyond j = − 1
2

As discussed earlier, normalizable wavefunctions in AdS3 exist only for j < 0 and are square
integrable only for j < − 1

2 . To define correlation functions beyond j = − 1
2 , one has to take

dimension-dependent normalization of the fields into account as discussed below.
Consider properly normalized primary fields of the SL(2, R) WZNW model

φj(x, z) = 2j + 1

π
[(γ − x)(γ̄ − x̄) e2φ + e−2φ]2j . (16)

The two-point function is completely determined by global conformal invariance,

〈φj1(x1, z1)φj2(x2, z2)〉 = B(j1)δ(j1 − j2)|x12|4j1 |z12|−4�j1 . (17)

There is one more δ-function term on the right-hand side, but it vanishes if we restrict
ourselves to j < − 1

2 . Coefficient B( j) is evaluated in [28] and is given by

B(j) = −π2j+1

(
�(1 − b2)

�(1 + b2)

)2j+1 2j + 1

π

�(1 + b2(2j + 1))

�(1 − b2(2j + 1))
b2 = 1

k − 2
.

In the supergravity limit k → ∞, the two-point function becomes

〈φj (x1, z1)φj (x2, z2)〉 = −2j + 1

π
|x12|4j . (18)

This can be interpreted as two-point function of operators on the boundary which couples
to bulk field φj(x, z) and is well defined for all values of j < − 1

2 and vanishes at j = − 1
2 .

Now let us consider two-point functions in boundary conformal field theory in the context
of AdS3/CFT2 correspondence.

Consider the Euclidean action for a massive scalar field in AdSd+1,

S[φ] = 1

2

∫
AdSd+1

dd+1x
√

g[gµν∂µφ∂νφ + m2φ2]. (19)

Scalar field in the bulk of AdS spacetime has the boundary limit

φ(z, �x) → zd−�[φ0(�x) + o(z2)] + z�[A(�x) + o(z2)] (20)

where φ0(�x) acts as a source function which couples the background field in the bulk and A(�x)

denotes the small fluctuation around this background, and we have denoted boundary points
by a vector and z is the radial coordinate in AdS.

� is given by the roots of the equation

�(� − d) = m2. (21)
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φ(z, �x) can be constructed from φ0(�x) via

φ(z, �x) =
∫

ddx ′ K�(z, �x, �x ′)φ0(�x ′) (22)

where K�(z, �x, �x ′) is bulk to boundary propagator [29, 30],

K�(z, �x, �x ′) = π−d/2 �(�)

�
(
� − d

2

) ( z

z2 + (�x − �x ′)2

)�

. (23)

The two-point function of operators Oi(�x) with conformal dimension �, which couples
to the fields φi(z, �x) at the boundary, is given by

〈O( �x1)O( �x2)〉 = 1

πd/2

(2� − d)�(�)

�(� − d/2)

1

|(x1 − x2)|2�
. (24)

For AdS3, we have d = 2 and 2j = −�. Equation (21) has two roots

�± = 1 ±
√

1 + m2.

Breitenlohner–Freedman [31] stability bound m2 > −1 for a massive scalar field in AdS3

implies that �+ > 1 and �− > 0.
Two-point function of operators on the boundary can be defined for � > 1 for all �+ and

is given by [32]

〈O�(x1)O�(x2)〉 = 1

π

(2� − 2)�(�)

�(� − 1)

1

(x12)�
. (25)

The factor �(�)

�(�−1)
comes from the normalization of the bulk to boundary propagator.

To compute two-point functions of operators on the boundary CFT which couple to fields
beyond j = − 1

2 barrier, we need to define two-point function for the branch 0 < � � 1,� = 0
being the unitary bound, by dimension-dependent renormalization of the fields [33]:

〈O�(x1)O�(x2)〉 = 2

π

�(�)

(� − 1)�(� − 1)

1

(x12)�
= 2

π

1

(x12)�
. (26)

This is correct that conformally invariant two-point function defined for all � > 0.
The fact that two-point functions of boundary operators can be defined for � < 1 is

suggestive that two-point functions of SL(2, R) primaries can also be defined in the range
0 � j � − 1

2 (note: � = −2j ) by defining φi(x, z) → φi(x,z)

2j+1 . All such values of j violate
Breitenlohner–Freedman stability bound in AdS3.

We have considered only real values of j as it gives real conformal dimensions of the
operators in boundary CFT. Meaning of complex j belonging to continuous series is still
unclear from the viewpoint of AdS/CFT correspondence. Thus, it is possible to define
correlation functions for all values of j < 0, which is the correct unitarity bound from the
point of view of CFT.

5. Summary and discussion

We have discussed the possible occurrence of logarithmic operators in AdS3 string theory.
Origin of logarithmic operators lie in the fact that some fields are in indecomposable
representation of extended symmetry algebra.

It was noticed that for j = − 1
2 representation there are no logarithmic singularities

in the coordinate space, but they are present in isotopic space. It was shown in [18] that
OPE of φ− 1

2
with any other operator does not have logarithmic terms, and φ− 1

2
is analogue

of prelogarithmic operator as in the Liouville theory. If we include φ− 1
2

in the spectrum,
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we also have to include the other logarithmic operators in the spectrum, which have logarithmic
correlation functions.

The singleton (fields in indecomposable representation of conformal algebra) action in
the bulk gives boundary two-point functions, which are logarithmic in nature. Thus singletons
play a special role in AdS/CFT correspondence.

It was possible to define correlation functions of the operators using a dimension-
dependent renormalization beyond j = − 1

2 representation using AdS/CFT correspondence
which are well behaved for all values of j up to j = 0. The representation j = 0 is special
and corresponds to singletons.
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